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Abstract: Allergic diseases are a set of chronic inflammatory disorders of lung, skin, and nose
epithelium characterized by aberrant IgE and Th2 cytokine-mediated immune responses to exposed
allergens. The prevalence of allergic diseases, including asthma, allergic rhinitis, and atopic dermatitis,
has increased dramatically worldwide in the past several decades. Evidence suggests that diet and
nutrition play a key role in the development and severity of allergic diseases. Dietary components
can differentially regulate allergic inflammation pathways through host and gut microbiota-derived
metabolites, therefore influencing allergy outcomes in positive or negative ways. A broad range of
nutrients and dietary components (vitamins A, D, and E, minerals Zn, Iron, and Se, dietary fiber, fatty
acids, and phytochemicals) are found to be effective in the prevention or treatment of allergic diseases
through the suppression of type 2 inflammation. This paper aims to review recent advances in the role
of diet and nutrition in the etiology of allergies, nutritional regulation of allergic inflammation, and
clinical findings about nutrient supplementation in treating allergic diseases. The current literature
suggests the potential efficacy of plant-based diets in reducing allergic symptoms. Further clinical
trials are warranted to examine the potential beneficial effects of plant-based diets and anti-allergic
nutrients in the prevention and management of allergic diseases.

Keywords: allergy; allergic inflammation; asthma; allergic rhinitis; atopic dermatitis; dietary lipids;
dietary fiber; dietary flavonoids; micronutrients

1. Introduction

Allergic diseases are a set of disorders caused by aberrant IgE-mediated immune
responses to exposed allergens, resulting in clinical symptoms such as red itchy eyes, sneez-
ing, nasal congestion, rhinorrhea, coughing, and itchy swollen skin [1]. The prevalence
of allergic diseases, including asthma, allergic rhinitis (AR), and atopic dermatitis (AD),
is high in developed countries [2–4], and the dramatically increased incidence of allergic
diseases in developing countries may be due to a shift in lifestyle towards Western cus-
toms [5,6]. In allergic diseases, a complex interaction between genetic and environmental
factors leads to abnormal immune responses at barrier sites in the body [2–4]. The Western
diet is recognized as an environmental risk factor for developing allergic diseases [4–6],
whereas the Mediterranean diet has been found to be protective [5,7,8]. Therefore, due to
the opposite effects in allergic reactions conferred by different dietary components, diets
with different nutrient compositions and varied amounts of specific nutrients either pro-
mote sensitization and exacerbate disease severity or protect against allergic diseases and
attenuate disease progression. There has been growing interest in dissecting the connection
between nutrients, their metabolites, and immune tolerance in allergic conditions.

Apart from diet and nutrition, gut microbiota has recently been linked with allergic
diseases [9,10]. Diet and food components play critical roles in shaping the gut microbiota,
which is essential in maintaining the integrity of the gut epithelial barrier and gut immune
homeostasis [11,12]. Moreover, nutrients and their endogenous or bacterial metabolites can
regulate allergic inflammation in distant organs beyond the gut, such as the lung and skin
through the gut–lung and gut–skin axes [13,14]. Among bacterial metabolites, short-chain
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fatty acids (SCFAs), bile acid conjugates, and tryptophan metabolites are the most studied
compounds with the ability to modify allergic reactions [8,13,14]. Multiple cells including
epithelial cells, stromal cells, sensory nerve cells, and various immune cells are involved in
a typical allergic reaction with a signature Th2 cytokine profile and allergic inflammatory
mediators including histamines, prostaglandins, and leukotrienes [2–4]. Nutrients and
their metabolites can regulate the metabolism and function of both structural cells and
various immune cells in all stages of allergic inflammation by altering the membrane lipid
composition, key signal transduction pathways related to inflammation and metabolism,
and gene expression at the transcriptional level through epigenetic regulation. The impacts
of dietary components on allergic reactions are illustrated in Figure 1.
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Figure 1. The impact of diet and nutrition on allergic reactions in the lungs, skin, and nose. The
arrows indicate regulation. Red arrows represent nutrients and endogenous metabolites and blue
arrow represents bacterial metabolites. Food components and endogenous metabolites can affect
all stages of an allergic reaction by influencing the epithelial barrier and the release of alarmins,
by interacting with innate and adaptive immune cells though special receptors to either promote
immune activation or induce tolerance, and by directly acting on tissue epithelium and resident cells
to regulate tissue inflammation and remodeling. Diet plays a critical role in determining the ecology
of the gut microbiota including diversity, composition, and metabolism. Bacterial metabolites can also
reach distant organs and regulate all these processes through multiple mechanisms. DC: dendritic
cells; ILC2, type 2 innate lymphoid cells; TSLP, thymic stromal lymphopoietin; SCFAs: short-chain
fatty acids; LTC4, leukotriene C4; LTD4, leukotriene D4; LTE4, leukotriene E4.; PGD2, prostaglandin
D2; NKT: natural killer T cells; Treg, T regulatory cells; Breg, B regulatory cells.

Accumulating evidence has shown that a broad range of nutrients and dietary compo-
nents (vitamins A, D, and E, minerals Zn and iron, dietary fiber, fatty acids, and phytochem-
icals) play critical roles in the prevention or treatment of allergic disease through host and
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gut microbiota-derived metabolites. The purpose of this paper is to review recent advances
in the understanding of diet and food components as contributing factors in the etiology
of allergies, molecular targets of nutrient regulation of immune cells and structural cells
involved in allergy, and clinical findings about nutrition intervention in treating allergic
diseases.

2. Materials and Methods

A systematic literature search was conducted for reports in English from January 2013
to August 2023 using PubMed and Web of Science databases. The following key words were
used individually or in combination: allergy, asthma, allergic rhinitis, atopic dermatitis,
dietary fiber, dietary lipids, dietary protein, dietary flavonoids, micronutrients, obesity,
and plant-based diet. Relevant articles were reviewed, and the most recent ones were
preferably cited. Additional reports were identified from selected papers in the reference
list. In general, priority was given to original research and review articles based on animal
studies and clinical trials.

3. Pathophysiology of Allergic Diseases

All allergic diseases involve type 2 inflammatory allergic responses to various al-
lergens. The prototypical allergic reaction includes a sensitization and memory phase
and an effector phase [15]. Common environmental allergens include dust mites, fungi,
pets, and pollens [3]. During the sensitization phase, allergens entering through the ep-
ithelial barrier, where damage is caused by viruses or other environmental factors, are
captured by dendritic cells and presented to naïve CD4+ T cells, leading to the generation
of allergen-specific CD4+ Th2 cells which produce IL-4, IL-5, IL-9, and IL-13 [3,15]. Ep-
ithelial cells sense the danger and release three cytokines, TSLP, IL-33, and IL-25, which
create a cytokine milieu to promote the generation of Th2 cells [16]. Besides epithelial
cells, stromal cells can also sense changes in metabolite levels and secrete IL-33 in response
to abnormal metabolite profiles [13,17]. High-level IL-4 and IL-13 induce IgE isotype
class-switching in B cells, which will produce large amounts of IgE when matured into
antigen-specific plasma cells. IgE binds through high-affinity FcεRI receptors on the surface
of specific innate effector cells (mast cells and basophils). At this stage, a memory pool of
antigen-specific Th2 cells and B cells is generated [3,15]. During the acute effector phase, an
encounter with the allergen induces the cross-linking of the IgE on the surface of sensitized
effector cells, triggering activation of effector cells and the release of mediators including
preformed histamine and tryptase, and de novo synthesized prostaglandin D2 (PGD2) and
leukotrienes C4 (LTC4), LTD4, and LTE4 [2,3]. These mediators interact with sensory nerve
cells, glandular cells, and epithelial cells to generate acute symptoms such as itching, sneez-
ing, coughing, and diarrhea in mucosal tissues [3]. In the later effector phase, accumulation
of the above mediators released by innate immune cells, together with cytokines IL-4, IL-5,
IL-9, and IL-13 produced by Th2 cells and type 2 innate lymphoid cells (ILC2s), as well as
epithelial cell-derived cytokines, maintain high antigen-specific IgE levels and recruit more
inflammatory cells including eosinophils and basophils into inflamed tissue, resulting in
tissue damage and chronic inflammation in a type I hypersensitivity reaction.

Epithelial cell-derived TSLP, IL-33, and IL-25 are critical initiators of type 2 immunity;
however, their function is beyond merely sending an alarm signal [16]. They regulate a
broad range of immune cells including the activation of dendritic cells to present antigens
to naïve T cells, promoting Th2 cell development, stimulating neuron cells, activating
ILCs, and enhancing memory Th2 cells [16]. Therefore, targeting these alarmins may be
effective in lowering susceptibility and decreasing exacerbations in all allergic conditions.
In fact, diet can influence the production of alarmins. For example, a high-fat diet promotes
serum TSLP [18] and a high inulin fiber diet upregulates IL-33 from stromal cells through
gut microbiota-derived bile acids [13]. In contrast, dietary fish oil or fermented fish oil
(both are enriched with long-chain unsaturated fatty acids EPA (eicosapentaenoic acid) and
DHA (docosahexaenoic)) lowers TSLP expression in mouse ear tissue with AD [19], and
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a natural flavonoid quercetin lowers TSLP levels in an in vitro AD model using human
keratinocytes [20].

Innate lymphoid cells (ILCs) are tissue-resident innate immune cells that regulate
tissue-specific immunity through interactions with epithelial cells, neurons, stromal cells,
and other tissue-resident cells [21]. ILC2 cells are highly enriched in mucosal sites such
as the lung, skin, and gut and are essential in type 2 inflammation. They are rapidly
activated by TSLP, IL-33, and IL25 and produce high levels of the classical Th2 cytokines
IL-4, IL-5, IL-9, and IL-13, therefore driving the pathogenesis of allergic diseases such
as asthma, AR, and AD. Some dietary metabolites, such as retinoic acid in carrots and
indole-3-carbinol contained in cabbage and broccoli [22,23], can restrain ILC2 responses
through the activation of the aryl hydrocarbon receptor (AhR). The benefits of consuming
these vegetables in the prevention of allergic diseases are likely due to these AhR ligands.
Dietary factors can affect ILC2 cells through other mechanisms besides acting as AhR
ligands. For example, dietary fiber metabolite butyrate can inhibit ILC2 proliferation and
inhibit IL-13 and IL-5 production from ILC2 cells through histone deacetylase (HDAC)
inhibition. Therefore, systemic administration of butyrate through drinking water or
intranasal administration can attenuate ILC2-driven airway inflammation and airway
hypersensitivity [24].

Allergen-specific regulatory T cells (Tregs) and regulatory B cells (Bregs) play essential
roles in the induction of immune tolerance to allergens and restoring immune homeostasis
in allergen-specific immunotherapy [15]. CD4+FOXP3+CD25+ Tregs can suppress ongoing
allergic inflammation by inhibiting DCs, effector Th (Th1, Th2, and Th17) cells, granulo-
cytes (mast cells, basophils, and eosinophils), B cells, as well as tissue-resident cells, either
through secreted inhibitory cytokines (IL-10, TGF-β) or through cell contact-dependent
mechanisms [15]. Bregs also play a key role in maintaining tolerance to allergens through
the production of anti-inflammatory IgG4 antibodies and by secretion of suppressive cy-
tokines IL-10, TGF-β, and IL-35 which promote Treg generation, inhibit T cell activation,
and induce tolerogenic DCs [15]. Nutrient metabolism can influence Treg or Breg gen-
eration and function. For example, indoleamine 2, 3-dioxygenase (IDO), a key enzyme
responsible for catabolizing dietary tryptophan to kynurenines, is highly expressed in
dendritic cells in nose-draining lymph nodes and is essential to immune tolerance of in-
haled allergens. A blockade of IDO impairs Treg differentiation during intranasal allergen
challenge, which leads to the abrogation of allergen-specific immune tolerance [25]. A
lower IDO level is associated with atopy in humans [26]. Moreover, maternal tryptophan
metabolism can influence the development of allergic diseases in offspring [27]. Decreased
numbers of regulatory B cells or functional changes in them are also observed in patients
with allergic disorders including AR, asthma, and AD [28–30]. In patients with AR, de-
creased IL-10-secreting Bregs are linked to altered glutamine metabolism [31]. Both retinoic
acid metabolized from vitamin A [32] and 1, 25-dihyroxyvitamin D3 metabolized from
vitamin D3 [33] promote Foxp3+ Treg differentiation and immune suppression of T helper
cells. Deficiency of dietary vitamin A or vitamin D induces high levels of Th2 cytokines
and IgE responses to allergens [34,35]. Fermented fish oil suppresses allergic inflamma-
tion in the skin, at least partly through enhancing TGF-β and IL-10 expression, which
might lead to tissue-specific Foxp3+ Tregs [19]. The trace mineral Zn also promotes Treg
differentiation [36,37] and therefore is essential to immune tolerance of allergens. AhR is
highly expressed on various antigen-presenting cells [38,39], and activation of AhR has
been shown to promote Treg generation through induction of tolerogenic DC [38,40] or
promote IL-10-producing Breg differentiation and function [41]. Recent studies in mice
showed dietary supplements of whey-protein-derived β-lactoglobulin complexed with
quercetin-iron or catechine-iron to be effective for reducing allergic symptoms [42,43]. Acti-
vation of AhR by quercetin or catechine, along with increased Tregs, are associated with
the observed beneficial effects [42,43].

Allergic rhinitis (AR) is an inflammation of the nasal mucosa associated with an
IgE-mediated response to environmental allergens and characterized by nasal itching,
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sneezing, rhinorrhea, and nasal congestion. AR is often co-morbid with asthma and
conjunctivitis [3]. It is one of the most common chronic inflammatory conditions and a
global health problem affecting over 500 million people worldwide [44]. In Europe, the
prevalence of AR in some European countries can be as high as 50% of the population [3].
In China, the prevalence of AR ranged from 6.2% to 7.2% in adults living in rural and urban
areas, respectively, in 2015 [45]. In Taiwan, the prevalence of AR was much higher, with
28.6% and 19.5% in men and women in 1995 [6]. A higher average income in Taiwan, as
opposed to mainland China, could be a contributing factor. According to a recent survey in
the city of Urugaiana, southern Brazil, the prevalence of AR was 31.7% in adults and 28%
in adolescents [46]. Although not life-threatening, AR impairs the patient’s quality of life,
lowers work performance and sleep quality, and therefore can result in substantial economic
costs [3]. In AR, initial allergen exposure leads to damage in the nasal epithelial cells and
the generation of allergen-specific IgE antibodies and Th2 memory cells. Upon re-exposure
to the allergen, crosslinking of IgE on mast cells and basophils results in degranulation and
the release of mediators of hypersensitivity which produce immediate nasal symptoms
within minutes [47]. The late-phase nasal symptoms, such as nasal blockage and nasal
discharge, happen within hours and are mainly caused by recruited eosinophils [47].
CD4+ Th2 cells, B cells, mast cells, neutrophils, and macrophages are observed in the nasal
lining infiltrate [47]. Many epidemiological and clinical studies supported the role of diet
and nutrition in the etiology, prevention, and treatment of AR [6,46,48–51].

Allergic asthma is the most common inflammatory disease of the lungs, with respi-
ratory symptoms such as wheezing, shortness of breath, chest tightness and coughing,
and airway hyper-responsiveness to inhaled allergens [2]. The prevalence of asthma in
Western countries plateaued at 10% in recent decades. In contrast, the prevalence of asthma
in countries with low and medium gross domestic product (GDP) has had a sharp increase
in recent years [2] in contrast to previously much lower incidence statistics, making asthma
a worldwide inflammatory disease. With eosinophils as the main airway infiltrate cell type,
other cells including mast cells, basophils, neutrophils, monocytes, and macrophages can
also be found [2]. Apart from airway inflammation, airway remodeling is another feature
of asthma that involves structural changes such as subepithelial basement membrane
thickening, subepithelial fibrosis, goblet cell hyperplasia and hypertrophy, and muscle hy-
perplasia [2]. Airway remodeling parallels disease development and leads to lung function
decline. None of the current drug therapies can alter the natural history of asthma [2]. The
impact of diet on asthma has been described [5] and most studies in the past were focused
on the relationship between nutrients and airway inflammation. However, recent studies
show evidence that dietary phytochemicals such as resveratrol [52] and kaempferol [53]
can modify airway inflammation as well as airway remodeling, suggesting potential thera-
peutic value in treating allergic asthma. Some in vitro studies also showed that vitamin D
is likely to play a role in airway remodeling in asthma [54].

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by intense
itching and eczematous lesions. Although recognized as an early onset disease as the
first step of the so-called atopic march, it can start later in life and is quite common
in adults [4]. It is one of the most common chronic inflammatory diseases, affecting
10–20% of the population in developed countries and its prevalence in developing countries
continues to rise [4]. Although originally thought to be a typical allergic disorder, skin
barrier dysfunction is discovered to be a key driver of AD [4,55,56]. Current research
emphasis shifts from focusing on immune mechanisms to epidermal barrier dysfunction.
Abnormal skin structure and altered lipid composition, inherited filaggrin deficiency, and
environmental factors such as detergent use and mite allergens all contribute to skin barrier
dysfunction in AD [4,55,56]. Skin infiltration of inflammatory cells mainly consists of Th2,
Th22, and Th17 cells, together with ILC2 cells [4]. Nutrition plays critical roles in the
etiology, prevention, and treatment of AD [57]. For example, a high-fat diet exacerbates
AD through upregulation of TSLP [18]. A sufficient level of Vitamin D is essential for
the maintenance of a normal skin barrier and vitamin D supplements are considered an
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alternative strategy for controlling skin barrier dysfunction in AD and the atopic march [55].
The role of dietary fiber in the prevention of AD recently emerged from a preclinical
study in a mouse model of AD [14]. A high-fiber diet, or a low-fiber diet with orally
administered SCFAs, protected against allergen-induced skin inflammation and allergen
sensitization [14]. The underlying mechanism lies in gut-derived SCFAs, particularly
butyrate, which promote skin barrier integrity by modulating keratinocyte metabolism and
differentiation [14].

4. The Role of Diet and Nutritional Status in Allergy

Dietary factors not only affect the development of allergic diseases [5,6,46,50] but also
influence disease course and severity [50,58]. Different dietary components are related to
differential allergy outcomes. The intake of high energy, high saturated fat, high protein,
and low fiber increases the risks of asthma and AR [6,46]. In contrast, high consumption
of vegetables and fruits, olive oil, and fish, characteristic of a Mediterranean diet, has
been linked with lower risks of asthma and AR [5,7,8,46,59]. Recent evidence suggests
that higher dietary fiber intake is associated with fewer asthma symptoms [58]. Moreover,
adequate intake of micronutrients is associated with a lower risk of atopic diseases and
reduction of symptoms [50]. The identified diet and nutritional risk factors for allergy are
shown in Box 1.

Box 1. Diet and Nutritional Risk Factors for Allergy.

High energy
High protein
High saturated fat, n-6 fatty acids, medium-chain fatty acids, cholesterol
Low total dietary fiber
Low vegetables and fruits
High simple sugar and processed foods
Low level of Zn, Fe, Vitamins A, D, E

There is a close connection between nutrient metabolism and allergic diseases. Broad
changes in energy, amino acids, and lipid metabolism are found in patients with polli-
nosis [60]. Patients with AR are shown to have at least 10 elevated metabolites in serum
which belong to three pathways, namely, porphyrin and chlorophyll, arachidonic acid,
and purine metabolism [61]. More and more cellular and molecular mechanisms are be-
ing elucidated concerning the regulation of allergic inflammation by individual dietary
components or specific nutrients (Figure 2). The pro-allergic nutrients, such as saturated
fatty acids and cholesterol, promote the release of TSLP, IL-25, and IL-33 from epithelial
and stromal cells, and activate ILC2 cells to produce IL-4, IL-5, IL-9, and IL-13, therefore
producing a cytokine milieu for allergic inflammation. By contrast, anti-allergic nutrients,
including phytochemicals, micronutrients, and dietary fiber, can suppress allergic inflam-
mation through inhibition of type 2 cytokine production in ILC2 cells via activation of AhR,
promotion of the generation of tolerogenic dendritic cells, anti-inflammatory macrophages,
and Tregs, and suppression of the release of histamine, prostaglandins, and leukotrienes
from granulocytes.

4.1. Dietary protein, Amino Acids, and Energy

A high-protein diet is associated with an increased risk for type 1 allergy in OVA-
sensitized mice, as indicated by increased B cells, total and antigen-specific IgE, and a
skewed Th1/Th2 balance towards Th2 dominance [62]. In these mice, moderate protein
deficiency without energy restriction results in similar total IgE as a normal protein diet [62],
suggesting that energy is critical in regulating IgE production and limiting energy supply
is important in controlling high IgE response during the exacerbation period in allergic dis-
eases. Indeed, 40% dietary energy restriction delayed the onset of spontaneous dermatitis
in NC/Nga (Nagogy University mice) mice whichs resemble human AD [63]. Moreover,
dietary restriction suppressed the progression of dermatitis in these mice and was asso-
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ciated with reduced serum IgE, with much fewer numbers of infiltrating inflammatory
cells (lymphocytes and eosinophils) in the skin and decreased dermal IL-4 and IL-5 produc-
tion [63]. The effects of energy or protein restriction on other allergic diseases remain to be
investigated.
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Figure 2. The roles of nutrients and foods in allergic inflammation. Epidemiological, clinical, and
animal studies have demonstrated that the Western diet promotes allergy and exacerbates symptoms
of allergic diseases, whereas nutritionally balanced plant-based diets protect from allergy and reduce
the severity of allergic diseases. The pro-allergic nutrients associated with a Western diet promote
the production and release of TSLP, IL-25, and IL-33 from epithelial cells and stromal cells and
activate ILC2 cells to produce large amounts of IL-4, IL-5, IL-9, and IL-13, therefore producing a
cytokine milieu for type 2 allergic inflammation reactions characterized by aberrant IgE and type 2
cytokines. By contrast, plant-based diets contain high amounts of anti-allergic nutrients which can
suppress type 2 allergic inflammation through inhibition of type 2 cytokine production in ILC2 cells
via activation of AhR, promotion of the generation of tolerogenic dendritic cells, anti-inflammatory
macrophages, and Tregs, and suppression of the release of histamine, prostaglandins, and leukotrienes
from granulocytes. AhR, aryl hydrocarbon receptor; ILC2, innate lymphoid cells; Treg, T regulatory
cell; TSLP, thymic stromal lymphopoietin; PGD2, prostaglandin D2; LTC4, leukotriene C4; LTD4,
leukotriene D4; LTE4, leukotriene E4. HDAC, histone deacetylase.
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The essential amino acid tryptophan is a key regulator of immune tolerance. Tryp-
tophan is metabolized to kynurenine by IDO (indolamin 2, 3-dioxygenase) in DCs and
binds to AhR on naïve CD4+ T cells to generate FoxP3+ Treg cells [25]. Expression of IDO
is much higher in nose-draining lymph nodes, i.e., cervical lymph nodes, compared with
peripheral lymph nodes [25]. In a mouse model of OVA-induced delayed hypersensitivity,
inhibition of IDO during intranasal OVA administration results in the loss of immune
tolerance as indicated by the increase in ear thickness [25]. IDO blockade was associated
with dysfunctional Tregs which failed to suppress DTH (delayed type hypersensitivity)
responses upon transfer to naïve animals [25]. Therefore, IDO expression in DCs in the
nose-draining lymph nodes is essential for immune tolerance to inhaled antigens.

Tryptophan metabolism is altered in many allergic conditions and the IDO pathway
plays a central role. Higher serum tryptophan concentrations are found in patients with
seasonal AR [64] and asthmatic children [65]. Higher tryptophan and kynurenine levels are
found in children with asthma and AR [26]. Low IDO activity has been found in asthma
and AR patients [26,66]. IDO activity is induced by IFN-γ and is considered a Th1 cell
activation marker [67]. During Th2 allergic inflammation, an elevated level of nitric oxide
inhibits IDO activity by binding to the heme group of the enzyme. Therefore, the rationale
of antioxidants as an anti-allergic therapy lies in their ability to block inducible nitric oxide
synthase [67] and rescue the IDO activity which is essential to generate Tregs.

L-glutamine is another amino acid that plays a critical role in immune cell function.
Although not an essential amino acid, L-glutamine is the primary fuel for immune cells and
is essential for basic immune cell functions such as lymphocyte proliferation and cytokine
production [68]. A recent study showed that abnormal glutamine metabolism is associated
with allergic diseases [31]. IL-10-secreting B cells are a type of B regulatory cell that sup-
presses allergic reactions. Decreased numbers of regulatory B cells or functional changes in
them are observed in patients with allergic disorders including AR, asthma, and AD [28–30].
The underlying mechanism of the defects in Bregs is the altered glutamine metabolism.
In normal cells, glutamine is transported into the cells by a cell surface transporter called
ASCT2 (alanine, serine, cysteine-preferring transporter 2), to be metabolized in a process
called glutaminolysis [69]. B cells from patients with AR express low levels of ASCT2 and
generate less IL-10+ regulatory B cells under IL-10-inducing culture conditions [31].

4.2. Dietary Lipids

The amount of dietary lipids and type of fatty acids influence allergic inflammation.
High total fat, animal fat, saturated fatty acids (SFAs), cholesterol, n-6 polyunsaturated fatty
acids (PUFAs), and medium-chain fatty acids (MCFs) are risk factors, whereas monoun-
saturated fatty acids (MUFAs) and n-3 PUFAs have protective properties. High animal fat
and SFAs are associated with allergic rhinitis in human adults while high MUFA intake is
associated with a lower risk for asthma [46,59]. In humans, high consumption of olive oil, a
rich source of MUFAs, is associated with reduced risk for asthma in Italian adults [59] and
teenagers in Taiwan [70].

A high-fat diet (60% Kcal from saturated fat) has been shown to increase serum TSLP in
C57BL/6 mice and exacerbate dermatitis in mice through upregulation of TSLP in NC/Nga
mice that develop AD spontaneously [18]. The high-fat diet increased TSLP in dorsal skin,
infiltration of inflammatory cells, and epidermal thickening in NC/Nga mice compared
with a low-fat diet. Dermatitis score was much lower in high-fat-fed NC-TSLP-KO mice,
suggesting TSLP mediates a high-fat-diet-induced increase in dorsal skin inflammation [18].
Long-term feeding (10 months since weaning) of a Western diet (21.2% fat, 34% sucrose,
and 0.2% cholesterol) also substantially increased spontaneously developed dermatitis in
aged C57BL/6 mice, as compared with a control diet (5.2% fat, 12% sucrose, and 0.01%
cholesterol) [71]. The Western diet-fed mice had increased epidermal thickness in their
dorsal skin and much more epidermal hyperplasia in the lesion skin, with hypergranulosis
and spongiosis typical of AD [71]. The Western diet leads to increased total bile acids,
altered bile acid profiles, and elevated bile acid signaling through two bile acid receptors
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TGR5 (transmembrane G-protein-coupled receptor-5) and S1PR2 (sphingosine-1-phosphate
receptor-2) in the lesion skin [71]. Lowering serum cholesterol with a bile acid sequestrant
cholestyramine reduced epidermal hyperplasia and decreased Th2 and Th17 cytokines [71].
Therefore, dysregulated bile acid metabolites, induced by the Western diet, are the main
contributors to the dermatitis lesion.

Besides saturated fatty acids and cholesterol, medium-chain fatty acids (MCFs) con-
tained in coconut oil or palm oil also prove to be a dietary risk factor for allergy [5]. In a
mouse model of peanut allergy, compared with n-6 PUFAs from peanut oil, MCFs decreased
dietary peanut or OVA antigen absorption into the circulation and increased antigen in the
Peyer’s patches, which resulted in a significant increase in activated DC cells [72]. Single
feeding of peanut protein with MCFs resulted in increased serum IgE, anti-peanut IgG,
and IL-13 production from splenocytes. MCFs promoted allergic sensitization through the
upregulation of mRNA of TSLP, IL25, and IL-33 from jejunum epithelium and promoted
Th2 cytokines in splenocytes in OVA-challenged mice. Moreover, MCFs also exacerbated
orally challenged antigen-induced anaphylaxis compared with n-6 PUFAs.

The phospholipids isolated from asparagus (Asparagus officinalis L.) are demonstrated
to have anti-allergic properties. Oral administration of these phospholipids suppressed
serum total IgE and OVA-specific IgE in OVA-challenged mice and ameliorated clinical
scores of AD induced by picryl chloride in NC/Nga mice [73]. Phospholipid and glycolipid
fractions from asparagus also potently inhibited β-hexosaminidase release from cultured
RBL-2H3 (rat basophilic leukemia-histamine-releasing cell line) cells, indicating a direct
effect on degranulation in allergic responses [73].

Although conflicting results are generated from human studies about the effects of
long-chain PUFA supplementation on asthma, AR, and AD [74], animal studies provide
clear evidence of the protection of dietary n-3 PUFA in these allergic conditions. Dietary
n-3 fatty acidα-linolenic acid shows beneficial effects in allergic inflammation by improving
skin barrier function in AD mice [75] and attenuating symptoms in OVA-induced AR in
mice, as compared with n-6 fatty acid linoleic acid [76]. Dietary linseed oil (enriched with
α-linolenic acid) increases EPA-derived metabolite 15-HEPE (hydroxyeicosapentaenoic acid
in eosinophils) in eosinophils in the nasal passage, which inhibits mast cell degranulation
by binding to PPAR (peroxisome proliferator-activated receptor) γ [76]. In human mast
cells, both EPA and DHA suppress IL-4 and IL-13 [77], suggesting their possible protective
roles in type 2 inflammation. In contrast, long-chain n-6 fatty acid-derived arachidonic
acid increases TNF-α and PGD2 in human mast cells [77], supporting the concept that an
increased n-6/n-3 fatty acid ratio in the Western diet is pro-inflammatory and likely to
promote type 2 inflammation. In the DNCB-induced AD mouse model, both dietary fish
oil and fermented fish oil significantly alleviated scratching behavior, decreased epidermal
thickness, and infiltration of cell infiltration in skin lesions, suppressed TSLP protein
expression in ear tissue and serum histamine and IgE [19], with fermented fish oil having a
better effect. Compared with natural fish oil, fermented fish oil resulted in higher TGF-β
and IL-10 mRNA expression and a stronger suppressive effect on IL-13 and IFN-γ in the ear
tissue due to higher content of EPA and DHA, known to be incorporated into the skin tissue.
The suppressive effect on Th2 cytokines by fish oil and fermented fish oil may not be a
direct effect on Th2 cells, but rather through the indirect effect of Tregs because fish oil does
not affect Th2 differentiation [19]. Fermented fish oil did not increase Tregs in the spleens of
these mice. However, increased Foxp3 expression in CD4+ T cells from fermented fish-oil-
supplemented mice is observed upon anti-CD3/anti-CD28 activation, suggesting fermented
fish oil alters the cytokine milieu to promote Treg differentiation. Additional research is
needed to investigate the mechanisms of how EPA and DHA affect structural cells and
innate immune cells to reduce type 2 allergic inflammation. Indeed, orally administered
EPA was shown to markedly ameliorate special diet-induced AD-like symptoms in hairless
mice accompanied by attenuated TSLP, IL-4, and IL-5, along with improved skin barrier
function [78]. Analysis of the composition of lipids covalently bound to corneocytes
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revealed that dietary EPA significantly increased covalently bound ceramides in the stratum
corneum [78].

Olive oil, as a major component of the Mediterranean diet, has many health benefits.
Olive oil is enriched with monosaturated n-9 fatty acids. Recently, it was shown that olive
oil confers protection again food allergies by improving gut mucosal barrier integrity [79].
Olive oil also enhances oral tolerance to dietary allergens by decreasing serum antigen-
specific IgE, antigen-specific IgG, and histamine [80]. Increased IL-10 and decreased IL-4
associated with olive oil feeding indicate that Tregs and Bregs are induced. Detailed
mechanisms warrant further investigation. Altered gut microbiota is also associated with
an olive oil diet, and the polyphenols and other phytochemicals in olive oil may be the
contributing factors. For example, uvaol, a triterpene in olive oil, exhibits anti-inflammatory
activity in two murine models of allergic inflammation [81].

4.3. Dietary Fiber

Recent animal studies show that dietary fiber protects against AD or allergic asthma
through its bacterial metabolites short-chain fatty acids, particularly butyrate [14,82,83].
Gut microbiota fermentation of dietary fiber into SCFAs is the key to the gut–skin axis or
gut–lung regulation of allergic reactions in the skin and lungs. Consistent with animal
studies, dysbiosis characterized by the enrichment of Faecalibacterium prausnitzii and a
reduced capacity for butyrate fermentation in the human gut microbiome has been found
in patients with AD [84]. Gut microbiota-derived butyrate has been found to be inversely
associated with mite-specific IgE levels in childhood asthma [85]. Furthermore, infants
who develop allergies in childhood have reduced bacterial enzymes for carbohydrate
breakdown and butyrate production in their gut microbiome [86]. A recent clinical study
in Japan showed that gut microbial factors are associated with AR [48]. The relative
abundance of Prevotella was lower and the relative abundance of Escherichia was higher
in AR patients compared with healthy controls [48]. Prevotella abundance reflects the
intake level of dietary fiber and is linked to a diet based on plant foods. Decreased relative
abundance of Prevotella is associated with the Western diet [87,88]. Increased abundance of
Escherichia is linked to a high-protein diet [89]. A higher abundance of Escherichia is also
found in children with asthma and rhinitis [90]. Despite observed alterations in the gut
microbiota in allergic individuals, the efficacy of probiotic treatment remains unclear [91].
A more comprehensive approach, which restores the overall health of the gut microbiome
through dietary approaches, might have better effects than the use of a single probiotic
species. There is some evidence from human studies that a higher dietary fiber intake has
protective effects on the clinical outcome of asthma [58,92,93].

Short-chain fatty acids, particularly butyrate, regulate type 2 inflammation mainly
through the inhibition of HDAC (histone deacetylase) on various immune cells and struc-
tural cells. Vancomycin treatment in mice results in dramatic alterations in the gut micro-
biome characterized by decreased richness, diversity, and decreased abundance of butyrate-
producing families, leading to increased susceptibility to allergic inflammation [83]. A
supplement of SCFA in drinking water attenuated OVA or papain-induced allergic asthma
by suppression of DC activation and trafficking, therefore restraining Th2 cell develop-
ment in Peyer’s patches [83]. Butyrate also directly regulates ILC2 cells by suppress-
ing IL-33-induced IL-13 and IL-5 production in cultured ILC2 lung cells from Rag2−/−

(recombination-activating gene 2 deficient) mice who lack T cells [24]. When administered
either through drinking water or through an intranasal route, butyrate ameliorated ILC2
cell-driven lung inflammation. The inhibitory effect of butyrate on ILC2 cell proliferation
was due to histone deacetylase (HDAC) inhibition [24]. In a mouse model of AR, intranasal
administration of sodium butyrate improved clinical symptoms and nasal mucosal epithe-
lial morphology, accompanied by decreased serum levels of Th2 cytokines and increased
Th1 cytokines [94]. Butyrate attenuates TSLP protein expression level in stromal cells
in nasal mucosa by working as an inhibitor of HDAC1 and HDAC3 [94]. Dietary fiber
can influence asthma through epigenetic mechanisms by inhibiting HDAC enzymes [10].
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Mouse studies showed that pups from pregnant mothers on a high-fiber diet or acetate are
protected from house dust mite (HDM)-induced asthma [95]. Besides epigenetic regulation
of HDAC, dietary fiber also affects the metabolism and function of structural cells at the
barrier sites, which are critical for the initiation of an allergic reaction. For example, in
a mouse model of HDM-induced AD, high-fiber (inulin, a highly fermentable dietary
fiber) intake or butyrate protects animals from developing skin inflammation [14]. A
lower disease severity is accompanied by an improved skin barrier, decreased epidermal
thickening, less inflammatory cell infiltration, and decreased antigen-specific IgE. Butyrate
feeding results in the enrichment of pathways related to immune and barrier function in
skin transcriptome [14]. Surprisingly, butyrate does not modify skin immune cells before
allergy exposure and does not affect skin Tregs. Butyrate blunts immune responses to HDM
through enhancing mitochondria fatty acid β-oxidation and long chain fatty acid synthesis
and promoting epidermal keratinocyte differentiation, therefore strengthening the skin
barrier at the baseline and following HDM exposure [14].

Both the amount and type of dietary fiber affect susceptibility to allergic airway
inflammation and the severity of the inflammation. A low-fiber diet (<0.3%) increases
susceptibility to HDM-induced allergic airway inflammation in mice compared with the
standard 4% chow diet [14]. Besides increased eosinophils and lymphocytes in the lung,
elevated total IgE and HDM-specific IgG1 were observed in mice on a low-fiber diet
compared with a normal-level fiber diet, suggesting that the low-fiber diet promotes
systematic allergic inflammatory responses. The low-fiber diet also results in a more
activated phenotype of dendritic cells, as indicated by increased surface expression of
CD40, CD80, PD-L1, and PD-L2. A high-pectin (a water-soluble and highly fermentable
dietary fiber) diet decreases susceptibility to allergic airway inflammation, as compared
with a high-cellulose (a water-insoluble dietary fiber which is not fermented by the gut
microbes) diet, indicating the gut fermentation process of pectin to SCFA, particularly
propionate, is the key for this beneficial effect [14]. Nonetheless, even the high-pectin
diet does not increase SCFA levels in the lung. High pectin intake leads to increased
propionate in the circulation which enhances bone marrow hematopoiesis and generation
of DC precursors, which express low levels of MHCII and CD40 and have an impaired
ability to promote Th2 cell responses.

Highly fermentable fibers other than pectin also influence allergic inflammation, an
effect dependent on the gut microbiota fermentation process. Compared with a high-
fiber diet composed of cellulose, a high-inulin or high-psyllium diet induces increased
serum bile acids and triggers eosinophilia in the colon and lungs [13]. Increased bile
acids bind to farnesoid X receptors on stromal cells and epithelial cells and trigger the
release of IL-33, which acts on ILC2 cells to produce IL-5, therefore promoting allergen-
induced type 2 barrier inflammations in the lungs [13]. This effect of inulin is dependent
on intestinal bacterial bile salt hydrolase (BSH) expressed on Bacteroides ovatus which
hydrolases conjugated bile acids into unconjugated bile acids. Inulin promoted the growth
of Bacteroides ovatus, therefore leading to increased serum bile acids.

4.4. Dietary Flavonoids and Other Phytochemicals

Flavonoids are a major type of phytochemicals in the diet and are naturally occurring
phenolic compounds which are commonly found in fruits, vegetables, herbs and spices,
legumes, tea, and vinegar [96,97]. There are six subclasses of dietary flavonoids based on
their chemical structures, namely flavanols, flavones, isoflavones, flavanones, flavonols,
and anthocyanidin [96,97]. Accumulating evidence has shown the anti-allergic effect of
dietary flavonoids. The effects of dietary flavonoids in AR, AD, and asthma are summarized
in Table 1.

As a major dietary flavonol-type flavonoid, quercetin is found in many fruits and
vegetables including onions, shallots, apples, berries, tea, tomatoes, grapes, nuts, and seeds.
The anti-inflammatory effect of quercetin is well documented in various animal models
of allergy [98]. Quercetin is effective in reducing allergic symptoms by decreasing serum
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IgE and Th2-related cytokines, reducing eosinophil, neutrophil, and mast cell infiltration
into local tissue, reducing epithelial thickness in the lung and hyperkeratosis, and sup-
pressing epithelial cell-derived cytokines IL-25, IL-33, and TSLP [98]. However, in most
in vivo animal studies, quercetin is administered through i.p. injection. As quercetin is a
glycone (namely, carbohydrate conjugate), how dietary quercetin is metabolized by the gut
microbiota and the subsequent effects on allergic inflammation remain to be explored. In
a recent study, oral administration of quercetin was shown to attenuate nasal symptoms
of OVA-induced AR in BALB/c (Halsey J Bagg albino mice strain c) mice by suppressing
angiogenic factors and proinflammatory cytokines TNF-α, IL-6, and IL-8 in nasal lavage
fluids [99]. The minimum effective dose for the above in vivo inhibition is similar to the
maximum daily recommended dosage for dietary quercetin supplements. Furthermore,
in IgE-sensitized mouse peritoneal mast cells, quercetin at concentrations comparable to
physiological blood concentrations achieved by recommended dietary quercetin supple-
ment intake dosage completely inhibited VEGF (vascular epithelial growth factor) and
bEGF (basic fibroblast growth factor) at mRNA level and potently suppressed TNF-α, IL-6,
and IL-8 at mRNA level [99]. In human keratinocytes treated with a cytokine cocktail
that induces TSLP production, quercetin suppressed TSLP production and MMP mRNA
expression [20]. Quercetin also increased protein expressions of epithelial junction pro-
tein E-cadherin, Occludin, and two proteins related to tissue repair: Twist and Snail [20],
indicating quercetin’s ability to promote wound repair. Notably, quercetin also highly
upregulated IL-10 mRNA and further increased IL-10 following proinflammatory cytokine
cocktail treatment, indicating that quercetin affects the cytokine milieu in the tissue to
promote IL-10 T or B regulatory cells under inflammatory conditions. Baicalin, a flavone-
type flavonoid present in lettuce and cantaloupe, also regulates IL-10/IL-17 and is able to
attenuate symptoms in a mouse model of AR [100].

Table 1. Beneficial effects of dietary phytochemicals in allergic diseases.

Flavonoids Experimental Models Results Reference

Quercetin OVA-induced AR
in BALB/c mice
25 mg/kg dosage
5 d during challenge

Inhibited sneeze and nasal rubs [99]
Suppressed angiogenic factors
and TNF-α, IL-6, IL-8

Quercetin Human HaCaT keratinocytes Promoted wound repair [20]
↑ E-cadherin, Occludin, Twist, Snail
↑ IL-10 at basal level
↓MMP1, MMP2, MMP9, ↓ TSLP

Kaempferol DNCB/mite extract induced ↓ ear thickness [101]
dermatitis in BALB/c mice ear ↓ Dermal and epidermal thickness
15, 50 mg/kg 5 d on/2 d off ↓Mast cell infiltration
for 4 wks following 2nd DNCB ↓ Serum IgE

↓mRNA of IL-4, IL-13, IFNγ
IL-17a, IL-6, IL-31, TSLP
in ear tissue

Jurkat cells ↓ αCD3/CD28, PMA/A23187
stimulated IL-2 production
↓ AICD
Inhibited MRP-1 activity
Suppressed JNK phosphorylation

Kaempferol OVA-induced allergic asthma ↓ TGF-β production in the lung [53]
in BALB/c mice ↑ E-cadherin and epithelial thickening
10, 20 mg/kg for 3 days ↓ α-SMA,
during challenge ↓ Collagen IV, ↓MT1-MMP

↓ Lung fibrosis
↓ PAR1 signaling
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Table 1. Cont.

Flavonoids Experimental Models Results Reference

Naringenin OVA-induced AR in Sprague Dawley rats Reduced nasal scratching and number of sneezing [102]
100 mg/kg 7 d during challenge Decreased serum IL-4, IL-5

Diosmetin DNCB-induced AD ↑ Skin barrier function [103]
in SKH-1 hairless mice ↓ Skin swelling, erythema
5 mg/kg for 14 d ↓ Skin erosion and dryness
during challenging period ↓ Epidermal thickness

↓Mast cell infiltration in skin
↓ Serum IgE and IL-4

Baicalin OVA-induced AR Reduced inflammatory cells [100]
in BALB/c mice in nasal lavage fluid
L-Baicalin 50 mg/kg ↓ Nasal symptoms
H-Baicalin 200 mg/kg ↓ Thickness of nasal epithelium
10 d following sensitization ↓ Nasal mucus production
and 4 d before challenge ↓ IL-17, ↑ IL-10 in nasal discharge

↓ OVA-specific IgE, IgG1 antibodies
Inhibited autophagy in nasal mucosa

Baicalin DNTB-induced AD ↓ Dorsal skin thickness [104]
in BALB/c mice ↓ Trans-dermal water loss
50, 100, 200 mg/kg ↓ Epidermal thickness
14-d following DNTB stimulation ↑ Skin barrier function, ↓ TSLP

↓ NF-κB signaling pathway in skin
↓ JAK, STAT signaling pathway
↑ Actinobacteria

Licoricidin DNCB/mite induced atopic ↓ Epidermal and dermal tissue [105]
dermatitis in ear tissue ↓ Infiltrating mast cells
in BALB/c mice ↓ Serum IgE, IgG1, IgG2a
50 mg/kg 5 d on/2 d off following ↓mRNA of IL-4, IL-5,
the 2nd DNCB for 4 wks IL-6, IL-13 in ear tissue

↓ Size and weight of draining
lymph nodes
↓ T cells and Th2 cytokines in dLNs
↑ T cell PTPN1 phosphorylation in dLNs
↓ DC activation through
antagonizing PTPN1

Resveratrol 3-month repeated OVA ↓ Airway hyperresponsiveness [52]
exposure induced chronic ↓ Inflammatory cells, IL-4, Il-5, Il-13
asthma in BALB/c mice in BAL fluid

↓ Lung infiltration of inflammatory cells
↓ Goblet cell number
↓ Peribronchial α-SMA
↓ Collagen amount in lung tissue

SDG OVA-induced AR Ameliorated sneezing number [106]
in BALB/c mice Decreased eosinophil and neutrophil
100 mg/kg 3 times a week for infiltration
4 wks before initial sensitization Enhanced β-glucuronidase

activity and increased
ED levels in nasal passage

HACAT—cells-human epidermal keratinocyte cell line; MMP—matrix metalloproteinases;
DNCB—dinitrochlorbenzene; Jurkat cells–T-lymphocyte cell line; CD—cluster of differentiation;
PMA—phorbol-myristate-acetate; AICD—activation-induced cell death; MRP—motility related protein;
JNK—c-Jun-N-terminal kinases; TGF—transforming growth factor; MT1-MMP—membrane type 1-matrix-
metalloproteinase; OVA—ovalbumin; SDG—secoisolariciresinol diglucoside; ED—enterodiol; PTPN1—protein
tyrosine phosphatase-receptor type 1; dLN—draining lymph nodes; alpha SMA—anti-alpha-smooth muscle actin;
PAR—protease-activated receptor. ↑, up-regulation; ↓, down-regualtion.
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Kaempferol, another flavonol-type flavonoid found in many fruits, vegetables, herbs,
teas, and medicinal plants, also exhibits anti-inflammatory, antioxidant, and anti-allergic
properties. In cultured lung epithelial BEAS-2B (human broncho-epithelial-alveolar stem
cell-derived cells) cells, nontoxic kaempferol suppresses LPS (lipopolysaccharide)-induced
TGF-β production, TGF-β-induced myofibroblast formation, LPS-induced collagen, and
MT1-MMP, suggesting its ability to suppress the epithelial-to-mesenchymal transition and
fibrosis. In a mouse model of asthma, orally administered kaempferol not only suppressed
eosinophil infiltration and airway inflammation but also inhibited the airway epithelial-
to-mesenchymal transition (EMT) and fibrosis [53]. As fibrotic airway remodeling is
characteristic of asthma, leading to lung function deterioration, and is not treated by
current drug therapy, kaempferol may be a potential therapy for asthma-related airway
construction and is worthy of further clinical studies. Kaempferol also protects mice against
AD by suppressing T cell activation though interaction with MRP-1 [101].

Oral administration of naringenin, a flavanone mostly found in citrus peel, was shown
to significantly reduce nasal scratching score in rats with OVA-induced AR with improved
histology in the nasal epithelium and decreased serum IgE, IL-4, and IL-5 [103]. In ad-
dition, naringenin inhibited TSLP production in PMA/Ionophore-activated human mast
cells (HMC-1 cells) through inhibition of NF-κB and TSLP-induced mRNA expressions
of IL-13, TNF-α, IL-17 receptors, and TSLP receptors in these cells [102]. Therefore, narin-
genin and many other flavonoids may have a protective role against allergic conditions in
allergen-sensitized individuals by regulating TSLP, the key initiator of Th2-driven aller-
gic inflammation. Future clinical studies of naringenin on human allergic conditions are
warranted.

The gut microbiota-derived metabolites are critical for the anti-allergic function of
some flavonoids. For example, the flavone glycoside diosmin and its aglycone form
diometin were shown to diminish DNCB-induced AD symptoms in SKH-1 hairless mice,
such as increased trans-epidermal water loss and hydration, epidermal thickness, and
infiltration of mast cells [103]. Decreased serum IgE and IL-4 in these mice were observed
for both diosmin and diometin; however, in cultured RBL-2H3 cells, only diosmetin and
not diosmin showed inhibitory effects on IL-4 production. This suggests that the in vivo
anti-allergic effect of diosmin depends on its breakdown into the aglycone form by the gut
microbiota. The anti-AD effect of baicalin also depends on the gut microbiota because fecal
transplantation from baicalin-treated mice to GF (germ-free) mice resulted in significantly
reduced skin thickness and clinical symptoms accompanied by decreased serum IgE and
IL-4 [104].

Some dietary phytochemicals other than flavonoids also exhibit strong anti-allergic
properties. Licoricidin, a component isolated from licorice (Glycyrrhiza uralensis) root which
is a commonly used herb in traditional medicine, shows protection against mouse AD by
suppression of T cell activation through regulating PTPN1 activity [105]. Resveratrol,
the best-studied polyphenol, inhibits mast cell activation and shows potential in treating
allergic conditions [107]. A recent study showed that orally administered resveratrol
inhibits airway inflammation and remodeling in a murine chronic asthma model [52]. In
mice that developed asthma from repeated exposure to OVA over the course of three
months, resveratrol effectively inhibited TGF-β production and signaling in the lung tissue
and epithelial–mesenchymal transition, therefore improving lung function as measured
by airway hyper-responsiveness to methacholine [52]. This suggests the potential of
resveratrol as an effective therapy for treating airway remodeling associated with asthma.
The nasal metabolism of phytoestrogen is important in the observed anti-allergic property
for secoisolariciresinol diglucoside (SDG), a phytoestrogen enriched in flaxseed. Dietary
SDG was shown to ameliorate OVA-induced AR symptoms in mice and was associated
with less infiltration of neutrophils and eosinophils [106]. SDG did not alter antigen-
specific IgE or IgG levels in plasma. Enterodiol (ED), the bacterial metabolite of SDG,
is circulated in the blood in the form of EDGlu, but converted to ED aglycone in the
nasal passage where it inhibits IgE-mediated degranulation of basophil degranulation in a
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GRR (interferon-gamma response region) 30-dependent manner [106]. Host or nasal cavity
microbiota-derived β-glucuronidase activity is responsible for generating active phenolic
metabolites. The metabolites form many phenolic compounds, including resveratrol,
EGCG (epigallocatechin gallate), and curcumin, and are likely able to control the nasal
local tissue environment in a similar manner to reduce effector immune cell activation in
allergic responses. Several plant extracts show good anti-allergic abilities in several animal
studies, although the exact active chemicals in these extracts remain to be determined. For
example, the anti-AD effect of celery extract [108], black soybean extract [109], and the anti-
AR effects of the extracts of Musa paradisiaca L. inflorescence [110], Piper nigrum fruit [111],
and Cuminum cyminum L. seed [112], are recently demonstrated in various animal models.
Exploring dietary phytochemicals and their metabolites for anti-allergic potential represents
a new direction for basic research and more clinical studies are needed to verify their effects
in human patients. The beneficial effects of dietary phytochemicals [51,113] in allergic
diseases are supported by the recent clinical intervention studies listed in Table 2. Daily
intake of 15 g of a novel barley-based formulation for 14 days proved to significantly reduce
all symptoms in patients with AR and, with even better results than fexofenadine in terms
of controlling nasal congestion, postnasal drip, and headache [114]. This beneficial effect
on the control of allergic symptoms could be due to the phytochemicals and soluble fiber
present in the barley drink power.

Table 2. The impact of dietary supplements in allergic diseases.

Year Location Study Design Subjects and Intervention Results

2022 RCT Patients (n = 60) with Improved allergic symptoms [113]
Tokyo eye/nose allergic symptoms including eye itching,
Japan Supplementation of sneezing, nasal discharge,

200 mg quercetin for 4 wks sleep disorder
vs. the placebo food ↓ Nasal discharge ecosipophil

Improved life quality

2022 RCT AR patients (n = 16) ↑ Overall symptoms in [51]
Chiang Mai Treatment with10 mg cetirizine 62.5% in shallot group

Thailand for 4 wks plus oral supplement 37.5% in placebo group
of 3 g shallot capsule vs. ↓ Overall symptom score
the placebo capsule ↓ Total ocular symptom score

2022 RCT AR patients (n = 77) Improved all symptoms [114]
Tehran, Treatment with 60 mg except cough in both groups

Mashhad Fexofenadine (FX) for 14 d. MS better in nasal congestion,
Iran vs. 15 g dried power of, postnasal drip, and headache

Ma-al-Shaeer (MS), ↓ Serum total IgE in both groups
a barley-based hot-water
extracted formulation

2022 RCT Allergic women (n = 51) ↓ Total nasal symptom score [49]
Vienna, Supplement for 6-month of 42% improvement in treated
Austria a lozenge called holoBLG (n = 25) group vs. 13% in placebo group

containing β-lactoglobulin with 45%, 31%, 40% improvement in
iron, polyphenol, retinoic acid, combined symptom score in
zinc vs. placebo (n = 26) holoBLG group in birch peak,

entire birch season, the entire
grass pollen season
↑ Iron levels in circulating
CD14+ monocytes
↑ Hematocrit values
↓ Red cell distribution width
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Table 2. Cont.

Year Location Study Design Subjects and Intervention Results

2018 RCT Patients with AD (n = 65) ↑ Serum vitamin D level [115]
Mexico City Standard treatment with Inverse relationship between

Mexico Vitamin D3 5000 IU/day final serum vitamin D level
for 12 wks vs. no extra vitamin and severity of AD

Serum vitamin D > 20 ng·/mL
with standard therapy is sufficient to
reduce AD severity

2019 RCT Asthma patients (n = 17) Inulin decreased airway [92]
Newcastle Treated with 7 d inulin eosinophils and HDAC9
Australia (6 g powder twice daily), expression in sputum cells

inulin + probiotic, placebo Inulin improved asthma
with a 2 wks run-in and control in poorly controlled
2 wks wash out periods eosinophilic asthmatics

RCT, randomized controlled trial; HDAC, histone deacetylase; ↑, up-regulation; ↓, down-regualtion.

4.5. Vitamins and Minerals

Vitamins and minerals have long been known for their immunomodulatory roles.
Vitamins A, D, and E, and trace elements zinc and iron, are particularly important di-
etary factors, influencing allergic inflammation and the development of allergic diseases.
Sufficient intake of Vitamins A, D, and E is required to control asthma [5]. Supplemen-
tation with vitamins E and D alone or in combination improves symptom management
of AD [116]. Serum vitamin D level is a determining factor in remission with standard
therapy for AD. A serum level of 1, 25(OH)2VD3 higher than 20 ng/mL plus standard
therapy is sufficient to reduce the severity of AD [115]. In a randomized, double-blind,
placebo-controlled clinical study, an oral supplement of 5000 IU/day vitamin D3 in patients
with AD significantly increases the serum level of 1, 25(OH)2VD3 to a much higher level
than the placebo group, and this dosage achieved sufficiency in 100% of the patients [115].
Vitamin D also shows potential in managing airway remodeling in asthma, based on a
number of in vitro studies showing the inhibitory effects of vitamin D on bronchial smooth
muscle cells, human airway smooth muscle cells, human asthmatic bronchial fibroblasts,
and human bronchial fibroblasts [54]. Recent studies suggest that deficiencies in iron, zinc,
and vitamins contribute to the etiology of atopic diseases in children, and supplementation
with micronutrients is considered essential for managing the atopic march [50]. Even in
adults, evidence also accumulates to support the role of micronutrients in the etiology or
treatment of atopic diseases [117]. At cellular and molecular levels, micronutrients are
essential for the proper growth and function of all immune cells. Vitamins A and D are
particularly important in maintaining immune tolerance to allergens by promoting Treg
induction [5]. Deficiencies in micronutrients mimic pathogen infection and lead to the
activation of immune cells, therefore priming the host for a Th2 response when encoun-
tering an allergen [50]. For example, iron depletion is related to elevated IgE levels and
functional iron deficiency is sufficient to evoke mast cell degranulation [50]. Therefore,
adequate intake of micronutrients contributes to immune tolerance by increasing allergic
resilience, promoting Tregs, and maintaining Th1/Th2 balance.

Recent evidence suggests that vitamin E plays a role in AR. In a mouse model of
OVA-induced AR, oral administration of vitamin E (100 mg/kg/day) at the time of OVA
sensitization decreased bronchoalveolar lavage fluid (BALf) IL-33 (more than 50%), IL-25,
and Th2 cytokines IL-4, IL-5, and IL-13 [118]. Interestingly, co-administration of selenium
resulted in a further decrease in IL-13 production, indicating synergistic effects between
vitamin E and selenium on IL-13 production. Vitamin E also decreased serum IgE by
more than 50% and histamine by 78% [118]. In a similar mouse model of AR, nasally
administered α-Tocopherol before nasal challenge in OVA-sensitized mice suppressed
nasal symptoms, with fewer inflammatory lesions and better integrity in nasal tissue [119].
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Reduced nasal eosinophils and mast cells, upregulated Th1 cytokine IFN-γ gene expression
and downregulated Th2 cytokines IL-4, IL-5, and IL-13 gene expression, and reduced total
IgE, specific IgE, IgG, and the PI3K-PKB (phosphatidylinositol 3-kinase-protein kinase)
pathway in mast cells were observed in α-Tocopherol-treated mice. These results suggest
that vitamin E status (systemic or local) affects both arms of the innate and adaptive
immune responses in AR. The molecular mechanisms of how vitamin E affects epithelial
cells and ILC cells warrant further research.

The trace element zinc is essential for immune function. Zinc deficiency is often linked
to allergies. A zinc supplement is shown to be effective in relieving asthma but not benefi-
cial to AD [50,57]. In an animal asthma model, zinc deficiency is related to greater airway
hyper-responsiveness compared with normal zinc intake, whereas zinc supplementation
reduces inflammatory cell infiltration and improves clinical symptoms [120]. At the cellular
level, the beneficial impact of zinc on allergic immune reactions mainly includes T cell
differentiation and antigen-specific T cell proliferation. In cultured human PBMCs (periph-
eral blood mononuclear cells), zinc deficiency increases Th17 differentiation [121]. On the
other hand, the zinc supplement in the cell culture of allergen-stimulated PBMCs alters
the Th1/Th2 ratio and decreases the proportion of Th17 [122]. Zinc supplementation also
enhances Treg differentiation either in allergen-stimulated PBMCs from atopic patients [37]
or in TGF-β treated PBMCs and mixed lymphocyte cultures [36]. Moreover, in vitro, a
supplement of zinc suppresses allergen-stimulated proliferation of atopic PBMCs [37].

Iron is another trace element that has been linked to the etiology of atopic diseases [123].
As the most common nutritional disorder, iron deficiency is associated with half anemia
which affects about a third of the world’s population [124]. Iron deficiency can be present
either as low hemoglobin levels in the blood or with low levels of metabolically active
iron despite normal ferritin iron storage in the body [123]. While the majority of the iron
requirement in the human body is met by recycling from senescent red blood cells by
splenic macrophages and redistribution to other cells, dietary intake of iron provides only
about one-tenth of the daily requirement [123]. Therefore, the macrophage regulation
of the iron pool and metabolism is highly important, which determines the activation
state of the immune system. When iron mobilization is blocked under various conditions,
iron deficiency in immune cells is perceived as a danger signal and leads to abnormal
activation such as mast cell degranulation [123]. Hepcidin, an acute-phase protein in-
duced by inflammation, affects the iron level in the circulation by blocking iron absorption
and iron mobilization from macrophages, thereby leading to functional iron deficiency
in atopic patients [123]. Raw milk whey-protein-derived β-lactoglobumin, as a carrier
of iron flavonoid complexes, has been shown to be effective in delivering iron to human
monocytic cells and impairing antigen presentation of allergens [43]. The so-called holo
β-lactoglobulin complexed with ligands is able to reduce allergic symptoms in mice by
decreasing lymphocytic and B cell proliferation and promoting Treg induction [42]. Consis-
tent with preclinical observations, in a randomized, double-blind, placebo-controlled study
(n = 51), a 6-month course of supplementation with a β-lactoglobulin-based micronutrients
lozenge formula (iron, polyphenol, retinoic acid, and zinc) in grass/birch pollen allergic
women resulted in more improvement in nasal symptoms, as compared with the placebo
group (42% vs. 13%) in an allergen-independent manner [49]. Dietary intervention with
the lozenge significantly improved iron status in myeloid cells, as indicated by increased
hematocrit levels and reduced width of red cell distribution, and increased iron levels in
CD14+ monocytes, but not in T lymphocytes. This study highlights the importance of iron
deficiency in allergy development, and correcting micronutrient deficiency in immune cells
as an effective therapy for allergy treatment.

Copper is closely related to iron metabolism. The copper-containing ferroxidase
ceruloplasmin is involved with iron mobilization during acute inflammation, and its
elevation indicates iron deficiency [117,123]. A recent clinical study in Japan showed that
multiple nutritional and gut microbial factors are associated with AR [48]. Four nutrients
(retinol, vitamin A, cryptoxanthin, and copper) were negatively associated with AR [48]. In
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a cohort study in Poland (n = 80), the plasma level of Cu was found to be associated with
AR in children aged 9–12 [125].

Selenium is an essential trace element that is very important for optimal immune
function. Populations from China, the UK, and Scandinavia generally tend to have reduced
Se levels [126]. While Se deficiency leads to impaired immune responses, Se supplements
boost immune competence. Selenium is an essential component of glutathione peroxidase
(GSH-Px), a key antioxidant enzyme that functions to reduce peroxides, therefore protecting
against inflammation-induced, excessive oxidative stress-related membrane damage [127].
While a lower serum level of selenium is reported to be associated with an increased
risk of asthma in human studies [128,129], an animal study demonstrated that a lower
level of selenium is associated with a lower asthma outcome. Although adequate dietary
intake of selenium does not protect against the development of allergic asthma in mice,
dietary selenium supplements have a synergistic anti-asthma effect with vitamin E in
reducing airway inflammation and Th2-related cytokines [118]. In a mouse model of
OVA-induced AR, co-administration of selenium with vitamin E resulted in a further
decrease in IL-13 levels, as compared with supplementation with selenium or vitamin
E alone [118], indicating that selenium and vitamin E affect different pathways of IL-13
production.

5. Obesity and Allergy

Due to the increasing prevalence of obesity and allergic diseases worldwide in recent
decades, the link between obesity and individual allergic disease is of great interest. Obesity
is a proven risk factor for asthma [130–132] and negatively impacts asthma outcomes [133].
Previously, no clear association was made between obesity and allergic rhinitis [130,131];
however, a recent meta-analysis study showed that obesity is perhaps associated with a
higher risk of allergic rhinitis in children [134]. Moreover, obesity can contribute to the
exacerbation of inflammation in severe persistent allergic rhinitis through increased IL-1β
and leptin levels [135]. A growing body of evidence suggests a link between obesity and
atopic dermatitis [136]. Although the prevalence of atopic dermatitis is higher in obese
children and adults, the association between obesity and the severity of atopic dermatitis
varies with age and gender [136]. The proposed underlying mechanisms for the link
between obesity and allergy include pro-inflammatory adipokines (leptin, IL-6, TNF-α)
released from adipose tissue [133], pro-inflammatory Th1 cells and Th17 cells associated
with adipose tissue from obese individuals [5], and the ILC2–eosinophil–macrophage
axis [5] in adipose tissue.

Dietary interventions producing weight loss in obese patients have been shown to
be effective in improving asthma control [137]. Randomized controlled trials on dietary
intervention showed that weight loss through restrictive diets with low energy is effec-
tive in improving asthma outcomes [138] and reducing airway inflammation in obese
patients [139]. Even a normal caloric diet with a reduced content of fat, particularly satu-
rated fat, was associated with reduced body weight and improvement of asthma-related
quality of life in obese pubertal adolescents [140]. Although there are very limited studies,
weight loss is associated with improved symptoms in atopic dermatitis. In a case report,
weight loss through combined dietary control and exercise treatment improved skin le-
sions and normalized IgE and eosinophil counts in an obese patient who did not respond
to standard cyclosporine treatment [141]. A randomized controlled study showed that
weight reduction in obese patients with atopic dermatitis was associated with significant
improvements in symptoms of atopic dermatitis, measured by eczema area and severity
index score and decreased dosage of cyclosporine [142]. There has been no study on the
effect of dietary intervention-induced weight loss on allergic rhinitis.

Plant-based diets are effective for weight loss [143–145] and can be an effective strategy
for weight control, as well as in the treatment of obesity [145]. A plant-based vegan diet
excludes all animal products, mainly consisting of grains, legumes, and vegetables and
fruits; while in comparison, a vegetarian diet does not eliminate all animal products but
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emphasizes the consumption of fruits, vegetables, and nuts [145]. The weight reduction
effect of such diets may be attributed to reduced calories and low fat intake [145]. Plant
protein, as part of a plant-based diet, has recently been shown to be a contributing factor
for weight control in overweight individuals [143]. An increased intake of protein and a
decreased intake of animal protein are associated with a decrease in body fat mass. Plant-
based diets are nutritionally adequate if planned well [144]. However, nutrient intake
in the long term can be a concern, as revealed in a study of the weight-loss effects of
a vegan diet in overweight postmenopausal women. The adoption of a low-fat vegan
diet for 14 weeks leads to changes in macronutrients such as decreased intake of total fat,
saturated fat and cholesterol, protein, and increased carbohydrate and fiber intake [144]. In
terms of micronutrients, the vegan diet increased intakes of total vitamin A, β-carotene,
thiamine, vitamin B6, folic acid, vitamin C, magnesium, and potassium, but decreased
intakes of vitamin D, vitamin B12, calcium, phosphorous, selenium, and zinc [144]. Fortified
food or supplements may help those following a vegan diet to meet the requirements of
micronutrient intakes.

Despite limited data being available, plant-based diets appear to be remarkably ef-
fective in improving asthma [146] and atopic dermatitis [147]. According to a report from
Sweden, a vegan diet therapy has a pronounced favorable effect on bronchial asthma [146].
After following the diet therapy for one year, patients became more tolerant of various
environmental stimuli, such as dust, smoke, and flowers [146]. A significant decrease in
asthma symptoms and improvement in clinical variables resulted in reduced needs for
medication [146]. Similar striking results show that a two-month course of treatment with
a customized vegetarian diet strongly inhibited the severity of atopic dermatitis [147]. A
sharp reduction in the number of peripheral eosinophils and of PGE2 (prostaglandin E2)
synthesis by monocytes was associated with this treatment [147]. Body weight-independent
mechanisms with these diets may contribute to the observed beneficial effects on allergy
outcomes, in addition to efficacy in body weight loss. In contrast to the Western diet which
contains high amounts of pro-inflammatory nutrients, plant-based diets are enriched with
micronutrients and dietary flavonoids associated with potent anti-inflammatory and anti-
allergy effects (Figure 2). A plant-based diet may be particularly useful for the treatment
of severe allergic diseases associated with obesity. Further clinical studies are required to
validate the speculation.

6. Conclusions

In conclusion, diet and nutrition play a key role in the development and severity of
allergic diseases by regulating tissue and immune homeostasis. Excessive calories, high
intake of protein and saturated fatty acids, or lack of dietary fiber and micronutrients
can trigger the defense mechanism in the immune system and prime the host for allergic
reactions. Therefore, calorie restriction, coupled with sufficient dietary fiber and adequate
macronutrient intake, will be essential for maintaining immune tolerance to allergens. The
plant-based diets, which emphasize the high consumption of fruits and vegetables, grains,
and legumes while avoiding or reducing animal foods, are associated with the reduction
of inflammation and weight loss. Further dietary intervention studies are warranted to
explore the potential beneficial effects of plant-based diets and the specific nutrients related
to such diets on allergic outcomes. As basic research efforts identify more novel dietary
components with anti-allergic properties, randomized placebo-controlled trials are also
needed to verify their efficacy in human patients. Nutritional therapy holds great promise
in reducing allergy symptoms, either as primary therapy and treatment or in support
of drug therapy. Assessment of nutritional status and anthropometric characteristics of
the patients, and analysis of host and gut microbiota by the multi-omics approach, will
be important in future clinical trials to identify novel mechanisms linking nutrition and
allergy.
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